Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes
نویسنده
چکیده
The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of the clastic OPS component. Such tectonic mélanges may include blocks and matrix derived from the olistostromes. Franciscan subduction and OPS accretion initiated in island arc crust at about 165–170 Ma, after which MORB and OIB were subducted and accreted following a long (tens of mega-ampere) gap with little or no accretion. Following subduction initiation, a ridge crest approached the trench but probably went dormant prior to its subduction (120–125 Ma), after which the subducted oceanic crust became progressively older until about 95 Ma. From 95 Ma, the age of subducted oceanic crust decreased progressively until arrival of the Pacific-Farallon spreading center led to termination of subduction and conversion to a transform plate boundary.
منابع مشابه
The processes of underthrusting and underplating in the geologic record: structural diversity between the Franciscan Complex (California), the Kodiak Complex (Alaska) and the Internal Ligurian Units (Italy)
Existing studies on active subduction margins have documented the wide diversity in structural style between accretionary prisms, both in space and time. Together with physical boundary conditions of the margins, the thickness of sedimentary successions carried by the lower plate seems to play a key role in controlling the deformation and fluid flow during accretion. We have tested the influenc...
متن کاملTectonic evolution of the Khoy ophiolitic complex, NW Iran
The Khoy Ophiolitic Complex (KOC) as a part of Tethyan, Izmir-Ankara- Erzincan and Bitlis-Zagros sutures of South East (SE) Turkey is broadly exposed around Khoy region (NW Iran). This complex comprises dismembered fragments of mantle lithosphere, obducted oceanic lithosphere and parts of volcanic arc remnants. The Khoy Ophiolitic Complex can be structurally divided into two major eastern and w...
متن کاملImaging the source region of the 2003 San Simeon earthquake within the weak Franciscan subduction complex, central California
[1] Data collected from the 2003 Mw6.5 San Simeon earthquake sequence in central California and a 1986 seismic refraction experiment demonstrate that the weak Franciscan subduction complex suffered brittle failure in a region without significant velocity contrast across a slip plane. Relocated hypocenters suggest a spatial relationship between the seismicity and the Oceanic fault, although blin...
متن کاملThe fate of water within Earth and super-Earths and implications for plate tectonics
The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subducti...
متن کاملOcean Drilling Program Leg 170 Scientific Prospectus Costa Rica Accretionary Wedge
To gain a better understanding of the mechanical and chemical behavior of accretion and underplating and tectonic erosion and to determine how deformation and dewatering are distributed throughout an accretionary prism, it is essential to establish the flow pattern of materials through subduction systems. Leg 170 consists of a program of drilling at four primary sites (proposed Sites CR-1 throu...
متن کامل